Equana

Back to Eigenvalue Solvers (ARPACK)

ar.svd.svds

Compute partial singular value decomposition of a sparse matrix.

Syntax

ar.svd.svds(matvec, matvecT, m, n, k, options?)

Description

Compute partial singular value decomposition of a sparse matrix. Finds the k largest or smallest singular values and optionally the corresponding left and right singular vectors.

Parameters

NameDescription
matvec- Function computing y = A*x (m×n matrix applied to n-vector)
matvecT- Function computing y = A^T*x (n×m matrix applied to m-vector)
m- Number of rows in the matrix
n- Number of columns in the matrix
k- Number of singular values to compute
options(optional)- Solver options

Returns

Promise<SvdsResult>