Docs/LAPACK/BLAS/la.factorizations.schur
Back to LAPACK/BLAS

la.factorizations.schur

Compute the Schur decomposition of a general n×n matrix A.

Syntax

la.factorizations.schur(A, options?)

Description

Compute the Schur decomposition of a general n×n matrix A. A = Z * T * Z^T where T is quasi-upper triangular (real Schur form) and Z is orthogonal. The diagonal of T contains 1×1 blocks (real eigenvalues) and 2×2 blocks (complex conjugate pairs of eigenvalues). Note: This implementation uses DGEEV to compute eigenvalues. The full Schur decomposition with DGEES would provide the actual quasi-triangular form, but DGEES is not currently exported.

Parameters

NameDescription
A- Input square matrix (n × n).
options(optional)- Decomposition options

Returns

SchurResult